Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cell Mol Life Sci ; 80(5): 136, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2317271

ABSTRACT

Influenza A virus (IAV) is a respiratory virus that causes epidemics and pandemics. Knowledge of IAV RNA secondary structure in vivo is crucial for a better understanding of virus biology. Moreover, it is a fundament for the development of new RNA-targeting antivirals. Chemical RNA mapping using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) coupled with Mutational Profiling (MaP) allows for the thorough examination of secondary structures in low-abundance RNAs in their biological context. So far, the method has been used for analyzing the RNA secondary structures of several viruses including SARS-CoV-2 in virio and in cellulo. Here, we used SHAPE-MaP and dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) for genome-wide secondary structure analysis of viral RNA (vRNA) of the pandemic influenza A/California/04/2009 (H1N1) strain in both in virio and in cellulo environments. Experimental data allowed the prediction of the secondary structures of all eight vRNA segments in virio and, for the first time, the structures of vRNA5, 7, and 8 in cellulo. We conducted a comprehensive structural analysis of the proposed vRNA structures to reveal the motifs predicted with the highest accuracy. We also performed a base-pairs conservation analysis of the predicted vRNA structures and revealed many highly conserved vRNA motifs among the IAVs. The structural motifs presented herein are potential candidates for new IAV antiviral strategies.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , Influenza A virus/genetics , RNA, Viral/genetics , Genomics
2.
Front Microbiol ; 13: 854172, 2022.
Article in English | MEDLINE | ID: covidwho-2154761

ABSTRACT

Background: Influenza and COVID-19 are respiratory infectious diseases that are characterized by high contagiousness and high mutation and pose a serious threat to global health. After Influenza A virus (IAV) and SARS-CoV-2 infection, severe cases may develop into acute lung injury. Immune factors act as an important role during infection and inflammation. However, the molecular immune mechanisms still remain unclear. We aimed to explore immune-related host factors and core biomarker for severe infection, to provide a new therapeutic target of host factor in patients. Methods: Gene expression profiles were obtained from Gene Expression Omnibus and the Seurat R package was used for data process of single-cell transcriptome. Differentially expressed gene analysis and cell cluster were used to explore core host genes and source cells of genes. We performed Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis to explore potential biological functions of genes. Gene set variation analysis was used to evaluate the important gene set variation score for different samples. We conduct Enzyme-linked immunosorbent assay (ELISA) to test plasma concentrations of Lipocalin 2 (LCN2). Results: Multiple virus-related, cytokine-related, and chemokine-related pathways involved in process of IAV infection and inflammatory response mainly derive from macrophages and neutrophils. LCN2 mainly in neutrophils was significantly upregulated after either IAV or SARS-CoV-2 infection and positively correlated with disease severity. The plasma LCN2 of influenza patients were elevated significantly compared with healthy controls by ELISA and positively correlated with disease severity of influenza patients. Further bioinformatics analysis revealed that LCN2 involved in functions of neutrophils, including neutrophil degranulation, neutrophil activation involved in immune response, and neutrophil extracellular trap formation. Conclusion: The neutrophil-related LCN2 could be a promising biomarker for predicting severity of patients with IAV and SARS-CoV-2 infection and may as a new treatment target in severe patients.

3.
Polymers (Basel) ; 14(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2081858

ABSTRACT

Infectious microbial diseases are a major public health hazard, calling for more innovative antimicrobials. Herein, polylactic acid (PLA) oligomers have been explored and reported as a bio-safe and eco-friendly functional antimicrobial agent against pathogens, such as viruses (H1N1, H3N2, and SARS-CoV-2), bacteria (E. coli, S. aureus, K. pneumoniae, MRSA), and fungi (C. albicans). The PLA oligomers were prepared by direct catalyst-free condensation polymerization of l-lactic acid monomers and characterized by FT-IR and 1H-NMR. The antiviral results demonstrate that PLA oligomers possess robust (inhibiting rate > 99%) and rapid (<20 min) antiviral activity against two pandemic ssRNA viruses, including influenza A virus (IAV) and coronavirus (CoV). Furthermore, the PLA oligomers exhibit high antibacterial activities against both Gram negative (G-) and Gram positive (G+) bacteria. The PLA oligomers also perform efficiently in killing a large amount of C. albicans as high as 105 cfu/mL down to zero at the concentration of 10 mg/mL. Thus, the broad-spectrum antimicrobial activity endowed the PLA oligomers with a promising biocidal option, except antibiotics in a wide range of applications, such as medical textiles, food preservation, water disinfection, and personal hygiene, in light of their unique biodegradability and biocompatibility.

4.
Comput Struct Biotechnol J ; 20: 4984-5000, 2022.
Article in English | MEDLINE | ID: covidwho-2007640

ABSTRACT

Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations' effects on SP-D's binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D's higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D's binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.

5.
Mar Drugs ; 20(6)2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1884265

ABSTRACT

In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed's currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed's extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host's defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed's bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed's bioactive compounds are analyzed, suggesting seaweed's potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.


Subject(s)
Seaweed , Viruses , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Seaweed/chemistry , Virus Replication
6.
Emerg Microbes Infect ; 11(1): 1371-1389, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1806183

ABSTRACT

Currently, SARS-CoV-2, especially the Omicron strain, is ravaging the world and even co-infecting human beings with IAV, which is a serious threat to human public health. As of yet, no specific antiviral drug has been discovered for SARS-CoV-2. This requires deeper understandings of the molecular mechanisms of SARS-CoV-2-host interaction, to explore antiviral drug targets and provide theoretical basis for developing anti-SARS-CoV-2 drugs. This article discussed IAV, which has been comprehensively studied and is expected to provide the most important reference value for the SARS-CoV-2 study apart from members of the Coronaviridae family. We wish to establish a theoretical system for the studies on virus-host interaction. Previous studies have shown that host PRRs recognize RNAs of IAV or SARS-CoV-2 and then activate innate immune signaling pathways to induce the expression of host restriction factors, such as ISGs, to ultimately inhibit viral replication. Meanwhile, viruses have also evolved various regulatory mechanisms to antagonize host innate immunity at transcriptional, translational, post-translational modification, and epigenetic levels. Besides, viruses can hijack supportive host factors for their replication. Notably, the race between host antiviral innate immunity and viral antagonism of host innate immunity forms virus-host interaction networks. Additionally, the viral replication cycle is co-regulated by proteins, ncRNAs, sugars, lipids, hormones, and inorganic salts. Given this, we updated the mappings of antiviral drug targets based on virus-host interaction networks and proposed an innovative idea that virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2 from the perspectives of viral immunology and systems biology.


Subject(s)
COVID-19 , Influenza A virus , Antiviral Agents/pharmacology , Host Microbial Interactions , Host-Pathogen Interactions , Humans , Immunity, Innate , Influenza A virus/physiology , SARS-CoV-2 , Virus Replication
7.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1791132

ABSTRACT

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

8.
4th International Conference on Bio-Engineering for Smart Technologies, BioSMART 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1730907

ABSTRACT

Influenza, or most commonly termed the flu, is a common respiratory illness caused by viral infection. The circulation of this virus is found year-round but is more common during the flu season: fall and winter. In the United States, the number of reported cases begins to rise in October, reaches a peak in December, and returns to normal in April. Even though there are four subtypes of the Influenza virus, the seasonal flu outbreaks in humans are caused by type A and B viruses. eVision utilizes influenza data provided by the United States Center for Disease Control and Prevention (CDC) and the World Health Organization (WHO) to analyze influenza A and B cases throughout the flu season. During the 2019-20 flu season, the positive influenza cases reported in the US were between 36 and 56 million, which is the highest over the past six years. However, during the 2020-21 flu season which is the first complete flu season within the COVID-19 pandemic, the reported flu cases reduced drastically to 1,899;of which 713 were caused by influenza A viruses, and 1,186 by influenza B viruses. This indicates that the number of flu B cases was higher than that of flu A which was not normally the case prior to the COVID-19 pandemic. It was further observed that flu B reached its peak either at the same time or earlier than flu A which is also unusual compared to the flu trends prior to the onset of the COVID-19 pandemic. This peculiar trend is also noted during the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003. This paper reports the findings on deviation in the Influenza type A and type B trends during the circulation of Coronavirus in the US and Canada and provides possible reasons for these changes. © 2021 IEEE.

9.
Viruses ; 14(3)2022 02 28.
Article in English | MEDLINE | ID: covidwho-1715784

ABSTRACT

Studying the entire virus replication cycle of SARS-CoV-2 is essential to identify the host factors involved and treatments to combat infection. Quantification of released virions often requires lengthy procedures, whereas quantification of viral RNA in supernatant is faster and applicable to clinical isolates. Viral RNA purification is expensive in terms of time and resources, and is often unsuitable for high-throughput screening. Direct lysis protocols were explored for patient swab samples, but the lack of virus inactivation, cost, sensitivity, and accuracy is hampering their application and usefulness for in vitro studies. Here, we show a highly sensitive, accurate, fast, and cheap direct lysis RT-qPCR method for quantification of SARS-CoV-2 in culture supernatant. This method inactivates the virus and permits detection limits of 0.043 TCID50 virus and <1.89 copy RNA template per reaction. Comparing direct lysis with RNA extraction, a mean difference of +0.69 ± 0.56 cycles was observed. Application of the method to established qPCR methods for RSV (-ve RNA), IAV (segmented -ve RNA), and BHV (dsDNA) showed wider applicability to other enveloped viruses, whereby IAV showed poorer sensitivity. This shows that accurate quantification of SARS-CoV-2 and other enveloped viruses can be achieved using direct lysis protocols, facilitating a wide range of high- and low-throughput applications.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Cell Culture Techniques , Humans , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics
10.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1700574

ABSTRACT

Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , Animals , Base Sequence , Dogs , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Models, Molecular , Nucleotide Motifs/genetics , RNA Folding , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
11.
Rev Med Virol ; 32(2): e2275, 2022 03.
Article in English | MEDLINE | ID: covidwho-1305140

ABSTRACT

Long noncoding RNAs (lncRNAs) are defined as RNA molecules longer than 200 nucleotides that can regulate gene expression at the transcriptional or post-transcriptional levels. Both human lncRNAs and lncRNAs encoded by viruses can modulate the expression of host genes which are critical for viral replication, latency, activation of signalling pathways, cytokine and chemokine production, RNAi processing, expression of interferons (IFNs) and interferon-stimulated genes (ISGs). Studies on lncRNAs as key regulators of host-virus interactions may give new insights into therapeutic strategies for the treatment of related diseases. This current review focuses on the role of lncRNAs, and their interactions with respiratory viruses including influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
COVID-19 , Influenza A virus , RNA, Long Noncoding , Humans , Influenza A virus/genetics , Interferons/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SARS-CoV-2/genetics , Virus Replication
12.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: covidwho-1256559

ABSTRACT

Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.


Subject(s)
Ceramides/metabolism , HIV-1/metabolism , Influenza A virus/metabolism , SARS-CoV-2/metabolism , Virus Diseases/metabolism , Virus Diseases/virology , Apoptosis/drug effects , Apoptosis/immunology , Ceramides/chemistry , Gene Expression Regulation, Viral , HIV-1/pathogenicity , Humans , Immunomodulation , Influenza A virus/pathogenicity , SARS-CoV-2/pathogenicity , Virion/growth & development , Virus Diseases/immunology , Virus Internalization , Virus Replication/drug effects , Virus Replication/immunology
13.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: covidwho-1139186

ABSTRACT

Bcl-xL represents a family of proteins responsible for the regulation of the intrinsic apoptosis pathway. Due to its anti-apoptotic activity, Bcl-xL co-determines the viability of various virally infected cells. Their survival may determine the effectiveness of viral replication and spread, dynamics of systemic infection, and viral pathogenesis. In this paper, we have reviewed the role of Bcl-xL in the context of host infection by eight different RNA and DNA viruses: hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (IAV), Epstein-Barr virus (EBV), human T-lymphotropic virus type-1 (HTLV-1), Maraba virus (MRBV), Schmallenberg virus (SBV) and coronavirus (CoV). We have described an influence of viral infection on the intracellular level of Bcl-xL and discussed the impact of Bcl-xL-dependent cell survival control on infection-accompanying pathogenic events such as tissue damage or oncogenesis. We have also presented anti-viral treatment strategies based on the pharmacological regulation of Bcl-xL expression or activity.


Subject(s)
Apoptosis , Virus Diseases/metabolism , bcl-X Protein/metabolism , Animals , Cell Survival , Host-Pathogen Interactions , Humans , Virus Diseases/pathology , Virus Replication , Viruses/metabolism , bcl-X Protein/analysis
14.
Phytomed Plus ; 1(2): 100027, 2021 May.
Article in English | MEDLINE | ID: covidwho-1032443

ABSTRACT

Background: In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose: LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods: Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results: This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion: This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.

15.
Cell Rep ; 33(5): 108345, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-898566

ABSTRACT

Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.


Subject(s)
Chiroptera/immunology , Gene Expression Regulation/immunology , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-7/immunology , Virus Diseases/immunology , Animals , Herpesvirus 1, Human/immunology , Influenza A virus/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Orthoreovirus/immunology
16.
Chem Eng J ; 420: 127575, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-898556

ABSTRACT

Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.

17.
Emerg Microbes Infect ; 9(1): 2245-2255, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-795734

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Related Coronavirus 2 (SARS-CoV-2) is a global health emergency. As only very limited therapeutic options are clinically available, there is an urgent need for the rapid development of safe, effective, and globally available pharmaceuticals that inhibit SARS-CoV-2 entry and ameliorate COVID-19 severity. In this study, we explored the use of small compounds acting on the homeostasis of the endolysosomal host-pathogen interface, to fight SARS-CoV-2 infection. We find that fluoxetine, a widely used antidepressant and a functional inhibitor of acid sphingomyelinase (FIASMA), efficiently inhibited the entry and propagation of SARS-CoV-2 in the cell culture model without cytotoxic effects and also exerted potent antiviral activity against two currently circulating influenza A virus subtypes, an effect which was also observed upon treatment with the FIASMAs amiodarone and imipramine. Mechanistically, fluoxetine induced both impaired endolysosomal acidification and the accumulation of cholesterol within the endosomes. As the FIASMA group consists of a large number of small compounds that are well-tolerated and widely used for a broad range of clinical applications, exploring these licensed pharmaceuticals may offer a variety of promising antivirals for host-directed therapy to counteract enveloped viruses, including SARS-CoV-2.


Subject(s)
Antidepressive Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/virology , Enzyme Inhibitors/pharmacology , Fluoxetine/pharmacology , Pneumonia, Viral/virology , Betacoronavirus/physiology , COVID-19 , Cell Line , Endosomes/virology , Humans , Pandemics , SARS-CoV-2 , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Virus Replication/drug effects
18.
J Innate Immun ; 12(1): 4-20, 2020.
Article in English | MEDLINE | ID: covidwho-774824

ABSTRACT

The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.


Subject(s)
Coronavirus Infections/virology , Coronavirus/pathogenicity , Immunity, Innate , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/pathogenicity , Animals , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/immunology , Host Microbial Interactions , Humans , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/immunology , Signal Transduction , Virus Internalization , Virus Replication
19.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-684968

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , CRISPR-Cas Systems , Influenza A Virus, H1N1 Subtype/drug effects , RNA, Viral/antagonists & inhibitors , A549 Cells , Antibiotic Prophylaxis/methods , Base Sequence , Betacoronavirus/genetics , Betacoronavirus/growth & development , COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , Computer Simulation , Conserved Sequence , Coronavirus/drug effects , Coronavirus/genetics , Coronavirus/growth & development , Coronavirus Infections/drug therapy , Coronavirus Nucleocapsid Proteins , Coronavirus RNA-Dependent RNA Polymerase , Epithelial Cells/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/growth & development , Lung/pathology , Lung/virology , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Phylogeny , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
20.
Viruses ; 12(5)2020 05 08.
Article in English | MEDLINE | ID: covidwho-209967

ABSTRACT

In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/genetics , Animals , Antigens, Viral/immunology , Clinical Trials as Topic , Epitopes , Histocompatibility Antigens Class II , Humans
SELECTION OF CITATIONS
SEARCH DETAIL